viernes, 30 de abril de 2010
El Vulcanismo
El vulcanismo es parte del proceso de extracción de material desde el profundo interior de un plantea, y su derrame sobre la superficie. Las erupciones también liberan hacia la superficie gases frescos provenientes del material derretido más abajo. El volcanismo es parte del proceso mediante el cual se enfría un planeta. Aún cuando no son volcanes, los géisers y manantiales calientes son parte del proceso vulcánico, involucrando agua y actividad hidrotermal. Algunos cuerpos planetarios, como la luna de Júpiter, Europa; también muestra vulcanismo congelado, en donde el agua ocupa el lugar de la lava.
De la misma forma que hay diferentes tipos de volcanes, hay muchas maneras como se forma un volcán. En la Tierra, la causa general para que surja el volcanismo, es mediante la subducción litósferica.
Hay unos cuantos planetas en donde hay volcanes en la superficie, incluyendo a Venus, Marte, y la luna de Júpiter Io. Otros planetas muestran los resultados de actividad volcánica. Estas incluyen Mercurio, la Luna de la Tierra, la luna de Júpiter, Europa, y quizás la luna de Neptuno Tritón.
Volcán
Fuente de lava de 10 metros de altura en un volcán de Hawái, (Estados Unidos).Un volcán (del dios mitológico Vulcano) es un conducto que pone en comunicación directa la parte superior de la corteza sólida con los niveles inferiores de la misma. Es también una estructura geológica por la cual emergen el magma (roca fundida) en forma de lava y gases del interior del planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados «erupciones», la cuales pueden variar en intencidad, duración y frecuencia; siendo desde conductos de corrientes de lava hasta explosiones extremadamente destructivas.
Generalmente adquieren una característica forma cónica que es formada por la presión del magma subterráneo así como de la acumulación de material de erupciones anteriores. Encima del volcán podemos encontrar su cráter o caldera.
Los volcanes se pueden encontrar en la tierra así como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; estos son los criovolcanes. Es decir, en ellos el hielo actúa como roca mientras la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la fría luna de de Júpiter llamada Europa.
Por lo general, los volcanes se forman en los límites de placas tectónicas, aunque hay excepciones llamadas puntos calientes o hot spots ubicados en el interior de placas tectónicas, como es el caso de las islas Hawaii. También existen volcanes submarinos que pueden expulsar el material suficiente para formar islas volcánicas.
Los geólogos han clasificado los volcanes en tres categorías: volcanes en escudo, conos de cenizas y conos compuestos (también conocidos como estratovolcanes).
Vulcanismo de superficie
El vulcanismo de superficie o continental es mucho menos importante que el submarino en cuanto a volumen de magma expulsado, pero se conoce mucho mejor porque es visible y afecta directamente al ser humano. Se sabe desde hace mucho tiempo que la actividad volcánica oscila desde las explosiones violentas hasta la suave extrusión de magma, que pasa a llamarse lava cuando cae en la superficie terrestre.
Volcanes de fisura
El vulcanismo de fisura se asocia con dorsales oceánicas, pero también ocurre en tierra, y en algunos casos con resultados espectaculares. Estos volcanes emiten enormes volúmenes de material muy fluido que se extiende sobre grandes superficies; las erupciones sucesivas se superponen hasta formar grandes llanuras o mesetas. Actualmente los volcanes de fisura mejor conocidos son probablemente los de Islandia, que se encuentra en la dorsal Medio atlántica. Pero este vulcanismo, cuando ocurre en tierra, se asocia sobre todo con el pasado, con las grandes llanuras que se encuentran en casi todos los continentes. Estos basaltos de meseta o de avalancha o ignimbritas han formado, entre otras, la meseta del Decán en la región central occidental de la India; la cuenca del Paraná al sur de Brasil, Argentina y Uruguay; la meseta de Columbia en el noroeste de Estados Unidos; la llanura de Drakensberg en Suráfrica; y la meseta central de la isla del Norte de Nueva Zelanda.
Volcanes Centrales
La mayor parte de la actividad volcánica de superficie no se asocia con fisuras, sino con chimeneas más o menos circulares o con grupos de chimeneas que se abren en la corteza terrestre. Estas chimeneas dan lugar a volcanes centrales de los que hay dos tipos básicos. El volcán cónico de pendientes acusadas que ya se ha descrito se construye a veces totalmente a partir de material sólido o tefra, cuyo tamaño va desde las cenizas y el Lapilli hasta piedras y grandes rocas. La tefra se expulsa de manera explosiva en una erupción o en una serie de erupciones y cae de nuevo a tierra en la proximidad inmediata del cráter, la abertura externa de la chimenea. Un ejemplo conocido de esta clase de volcán es el Paricutín, en México, que entró en erupción en un campo cultivado el 20 de febrero de 1943 y en seis días formó un cono de cenizas de 140 m de altura; al terminar el año se había alzado hasta más de 336 metros.
Pero muy pocos volcanes cónicos expulsan sólo tefra en todas las erupciones y forman conos de cenizas. Es probable que en algunos episodios expulsen lava, y en tal caso el edificio volcánico estará formado por capas alternas de tefra y lava. Estos volcanes se llaman compuestos o estratovolcanes y a este tipo pertenecen casi todos los mayores y más conocidos del mundo: Stromboli y Vesubio en Italia; Popocatépetl en México; Cotopaxi en Ecuador; y Kilimanjaro en Tanzania, además del Fuji Yama y el Mayon, ya citados. Aunque casi todos los volcanes cónicos y casi cilíndricos suelen tener una sola chimenea central, esto no impide la expulsión de material volcánico por chimeneas secundarias, a veces temporales, que se abren en la ladera.
Volcán Escudo
El otro tipo importante de volcán central es el volcán escudo. Se trata de una estructura muy grande, de varias decenas de kilómetros de diámetro, de pendientes suaves, en general de menos de 12º de inclinación. Suele ser el producto de cientos de coladas de lava basáltica muy fluida. Con frecuencia tienen estos volcanes varias chimeneas, así como fisuras en los lados. Esta condición se cumple de manera especial en los mayores ejemplares de este tipo, en particular en los de las islas Hawaii, en el Pacífico norte. Estas islas son un complejo de volcanes escudo que se alzan desde el fondo oceánico; Mauna Loa, en la isla de Hawaii, es uno de los más recientes. Se tiene por la montaña más voluminosa de la Tierra, pues se alza más de 10.000 m sobre el fondo marino. El Etna, en Sicilia, es también un volcán escudo.
Volcanes de Superficie y Tectónica de Placas
Los volcanes de superficie suelen asociarse con los límites destructivos que forman las placas tectónicas en los bordes por los que se acercan. Cuando dos placas convergen, el borde de una se hunde por debajo de la otra y avanza hacia el manto, la capa semisólida situada por debajo de la litosfera. Esto provoca un movimiento de subducción o reincorporación al manto de las rocas de la litosfera. En ocasiones los bordes convergentes de las placas están formados ambos por litosfera oceánica, pero la situación más común es que una esté formada por litosfera oceánica y la otra por corteza continental. Como ésta es más gruesa y menos densa, es la litosfera oceánica la que experimenta subducción.
Cuando la corteza oceánica se funde como resultado de la subducción, el magma formado asciende a lo largo del plano de subducción y brota en forma de erupción en la corteza terrestre, por lo general en el lado de tierra del límite destructivo, normalmente marcado por fosas oceánicas. Cuando el magma emite sobre la tierra da lugar a largas cadenas montañosas, entre las que destacan los Andes de Américadel Sur y la cordillera de América del Norte, que comprende las montañas Rocosas y la cordillera de las Cascadas. Cuando las erupciones de subducción se producen en el mar, se forman largas cadenas de islas volcánicas dispuestas en forma de arco, como Japón o Filipinas.
Casi todas las zonas de subducción de la Tierra se encuentran alrededor del océano Pacífico, al igual que más de las tres cuartas partes de todos los volcanes de superficie, activos, durmientes o extinguidos. Forman una franja conocida como cinturón de fuego en el que también son comunes los terremotos. Este cinturón se extiende a lo largo de los Andes, la cordillera de América del Norte, las islas Aleutianas, la península de Kamchatka al este de Siberia, las islas Kuriles, Japón, Filipinas, Sulawesi, Nueva Guinea, las islas Salomón, Nueva Caledonia y Nueva Zelanda.
3.0 Calderas
El cráter por el que brota el material volcánico se suele mantener en forma de depresión, incluso cuando el volcán está dormido, como resultado del hundimiento de la lava en la chimenea eruptiva. A veces se hunde tan profundamente que el cono volcánico se derrumba y cae al interior de la chimenea, donde forma una depresión mucho mayor llamada caldera, en ocasiones de varios kilómetros de diámetro. Las calderas pueden ser también producto de explosiones muy violentas que ‘vuelan’ el cono, como ocurrió en Krakatoa, Indonesia. Con el tiempo, las calderas de los volcanes dormidos o apagados pueden llenarse de agua y formar lagos. El más conocido es probablemente el lago del Cráter de Oregón, Estados Unidos. Tiene cerca de 8 km de diámetro y se formó al hundirse un volcán prehistórico compuesto, el monte Mazama.
4.0 Materiales Volcánicos
Por debajo de casi todos los volcanes activos o potencialmente activos hay una cámara magmática llena de roca fundida. El magma que contiene surgió probablemente de la astenósfera, la capa móvil situada inmediatamente por debajo de la litosfera. Esta cámara es una ‘parada intermedia’ en el camino hacia la superficie. Cuando el magma surge puede brotar en forma líquida, sólida o gaseosa.
Casi todos los magmas contienen gases disueltos, como dióxido de carbono y de azufre, que se liberan como consecuencia de la brusca reducción de presión que experimenta el magma cuando asciende hacia la superficie. La liberación puede ser muy repentina y adquirir fuerza explosiva suficiente para impulsar el magma y lanzarlo hacia la atmósfera en forma de tefra o piroclastos y materiales fundidos o semifundidos que se enfrían en mayor o menor grado a medida que caen de nuevo al suelo. El tamaño de las partículas que componen la tefra es muy variable, y comprende desde el polvo muy fino y las cenizas, que el viento puede arrastrar a distancias enormes, hasta peñascos de 100 toneladas. Las erupciones muy violentas pueden lanzar estas rocas a distancias de varios kilómetros de la chimenea. En las no tan violentas, los fragmentos de material volcánico no se lanzan hacia arriba, sino que, mezclados con los gases ardientes en combinación mortífera, fluyen pegados al suelo en forma de nube ardiente que quema y destruye cuanto encuentra a su paso.
Algunos volcanes no experimentan nunca episodios explosivos y la lava fluye de ellos y se extiende por el terreno con suavidad. Estas erupciones las causa un magma basáltico muy fluido que contiene poca cantidad de sílice y de gases. Se asocian con el vulcanismo fisural y con los volcanes escudo, como los de Hawaii. Cuanto más sílice contiene el magma, tanto más viscoso es. A los gases les resulta más difícil escapar de esta lava pastosa, por lo que el aumento de la viscosidad se suele asociar con erupciones más explosivas.
5.0 Erupciones
Cualquier volcán puede mantenerse varios días en erupción, pero algunos tipos tienden a asociarse con volcanes determinados. Este hecho se refleja en la clasificación de las erupciones volcánicas, que atribuye a cada categoría el nombre de un volcán representativo. Las erupciones fisurales y de escudo suelen clasificarse como islándicas y hawaianas, respectivamente. Las más explosivas se categorizan, en una escala de viscosidad creciente del magma, como estrombolianas, vulcanianas (del monte Vulcano, en las islas Lípari, Italia), vesuvianas, plinianas y peleanas (de la montaña Pelada de la Martinica). Las erupciones vesuvianas, plinianas (una forma más violenta de las vesuvianas) y peleanas son las de carácter más paroxismal y en todas ellas se expulsan grandes cantidades de cenizas y bloques de lava. Las peleanas en particular se asocian con la emisión de nubes ardientes. La erupción de la montaña Pelada el 8 de mayo de 1902 destruyó la ciudad de Saint-Pierre y causó la muerte a unas 30.000 personas, casi todas abrasadas por la nube ardiente o asfixiadas.
Las erupciones más violentas se asocian con los bordes destructivos de las placas. Las dos mayores erupciones de la historia -las del Krakatoa y el Tambora- se produjeron en la confluencia de las placas asiática y australiana. Tambora, en la costa norte de la isla Sumbawa, entró en erupción en 1815; el cono saltó por los aires y el volcán causó la muerte a unos 50.000 isleños. La isla volcánica de Krakatoa, situada entre Java y Sumatra, en Indonesia, entró en erupción en 1883 y quedaron destruidas las dos terceras partes de su superficie. Las olas provocadas por la explosión causaron la muerte de decenas de miles de personas en todo el Sureste asiático. El ruido se escuchó a una distancia de más de 4.830 km, y los millones de toneladas de cenizas proyectadas a la atmósfera provocaron espectaculares puestas de sol en todo el mundo durante más de un año.
En contraste con las erupciones explosivas, que han causado la muerte a muchos miles de personas a lo largo de la historia, las islándicas y hawaianas y, en cierto modo, las estrombolianas, casi nunca son peligrosas. La lava fluye a veces muy deprisa, pero por lo general da tiempo a evitarla, aunque sí resultan destruidos edificios y cultivos. En ocasiones se ha logrado desviar el río de lava de algún edificio abriendo trincheras, levantando muros o mediante voladuras, pero estos métodos no suelen ser completamente satisfactorios.
CAUASA Y CONSECUENCIAS
...causas de las extinciones masivas durante casi 60 anos, de acuerdo con peters. "los impactos, en su mayor parte, no se relacionan con la mayoría de las extinciones. tambien han habido estudios de vulcanismo, y algunas erupciones corresponden a extinciones, pero muchas no". arnold i. miller, paleobiologo y profesor de geología en la universidad de cincinnati, dice que el nuevo estudio es sorprendente porque establece una clara relacion entre el momento de los eventos de extincion masiva y los cambios en nivel del mar y el sedimento: "con el paso de los anos, los investigadores se han vuelto bastante desdenosos de la idea de que las extinciones masivas marinas, como la gran extincion de finales del permico, podrían estar vinculadas con disminuciones del nivel del mar, aunque se sabe que esas disminuciones han ocurrido muchas veces durante toda la historia de la vida. la clara relacion que este estudio documenta motivara a muchos a reconsiderar sus opiniones previas". peters midio dos tipos principales de ambientes marinos de estante, conservados en el registro rocoso; uno donde los sedimentos derivan de la erosion del suelo y el otro compuesto principalmente por carbonato de calcio, que es producido en el lugar por los organismos con cochas y mediante procesos químicos. "las diferencias físicas entre estos dos tipos de ambientes marinos tienen consecuencias biologicas importantes", explica peters, y senala las diferencias: estabilidad del sedimento, temperatura, y disponibilidad de nutrientes y luz de sol. en el transcurso de cientos de millones de anos los oceanos del mundo se han dilatado y contraído en respuesta al movimiento de las placas tectonicas terrestres y a los cambios en el clima. hubo períodos en la historia del planeta cuando extensas areas continentales fueron inundadas por mares poco profundos, como el canal infestado de tiburones y mosasauros que netamente separo a america del norte durante la era de los dinosaurios. cuando esos mares epi-continentales drenaron, los animales como los mosasauros y los tiburones gigantes se extinguieron, y tambien cambiaron las condiciones sobre los estantes marinos donde la vida exhibía su mayor diversidad en la forma de cosas como almejas y caracoles. el nuevo estudio de wisconsin, dice peters, no excluye a las otras influencias sobre la extincion, como los eventos físicos, erupciones volcanicas o asteroides asesinos, o las influencias biologicas, enfermedad y competicion entre especies. pero lo que sí hace, argumenta, es proveer a los eventos de extincion masiva un vínculo comun a lo largo de un importante trecho de la historia de la tierra. "las mayores extinciones masivas tienden a ser tratadas aisladamente por los científicos", dice peters. "este trabajo las vincula, y a eventos mas pequenos en terminos de un mecani...
jueves, 22 de abril de 2010
EL VULCANISMO
Generalmente adquieren una característica forma cónica que es formada por la presión del magma subterráneo así como de la acumulación de material de erupciones anteriores. Encima del volcán podemos encontrar su cráter o caldera.
Los volcanes se pueden encontrar en la tierra así como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; estos son los criovolcanes. Es decir, en ellos el hielo actúa como roca mientras la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la fría luna de de Júpiter llamada Europa.
Por lo general, los volcanes se forman en los límites de placas tectónicas, aunque hay excepciones llamadas puntos calientes o hot spots ubicados en el interior de placas tectónicas, como es el caso de las islas Hawaii. También existen volcanes submarinos que pueden expulsar el material suficiente para formar islas volcánicas.
Los geólogos han clasificado los volcanes en tres categorías: volcanes en escudo, conos de cenizas y conos compuestos (también conocidos como estratovolcanes).